A New Grid-Based Monte Carlo Code for Raman Scattered He II

[EvS Meeting] May 15, 2019 @ Sejong University

Bo-Eun Choi (Sejong Univ.)

In Collaboration with Seok-Jun Chang & Hee-Won Lee

Contents

- Introduction
 - Raman Scattered He II
 - Raman He II Features in Symbiotic Stars and Planetary Nebulae
- Grid-Based Radiative Transfer Simulations
- <u>Results</u>

He II Emission

• At high temperature, He II, C IV, O VI, O VII ... emission

He II Emission

Symbiotic Stars & Planetary Nebulae

 Wide binary systems hot white dwarf + mass-losing giant

- Young planetary nebulae
- The heavy mass-loss at the giant stage

Symbiotic Stars & Planetary Nebulae

Symbiotic Stars & Planetary Nebulae

Raman Scattered He II

He II Atomic level

H I Atomic level

- ① He II 1025 → 6545 Å blueward of Hα
- ② He II 972 → 4850 Å blueward of H β
- ③ He II 949 → 4332 Å blueward of Hγ

Raman He II Features

Relative Flux

Raman He II Features

Raman Scattered He II

•
$$E_f = E_i - E_{Ly\alpha}$$

•
$$\frac{1}{\lambda_f} = \frac{1}{\lambda_i} - \frac{1}{Ly\alpha} \implies \frac{\Delta\lambda_f}{\lambda_f} = \left(\frac{\lambda_f}{\lambda_i}\right) \frac{\Delta\lambda_i}{\lambda_i}$$

In the case of Raman He II 4850 Å,

$$\left(\frac{\lambda_f}{\lambda_i}\right) = \left(\frac{4850}{972}\right) \approx 5$$

Raman scattered He II lines are a few times broader than He II emission lines !

Raman He II Features

Relative Flux

Raman Scattered He II

Lee et al. (2016)

Grid-Based Radiative Transfer

- In each grid, the physical conditions are taken to be uniform.
- A velocity vector and density are assigned to each grid.
- The optical depth T_i for grid 'i' is computed by multiplying the cross section, density and the path length.
- By adding τ_i through the photon path, we determine the next scattering site.

Grid-Based Radiative Transfer

$$\lambda_{i}\left(1+\frac{\overrightarrow{v_{1}}\cdot\overrightarrow{k_{i}}}{c}\right)\left(1-\frac{\overrightarrow{v_{1}}\cdot\overrightarrow{k_{1}}}{c}\right) \qquad \qquad \lambda_{i}\left(1+\frac{\overrightarrow{v_{1}}\cdot\overrightarrow{k_{i}}}{c}\right)\left(1-\frac{\overrightarrow{v_{1}}\cdot\overrightarrow{k_{1}}}{c}\right)\left(1-\frac{\overrightarrow{v_{2}}\cdot\overrightarrow{k_{2}}}{c}\right)$$

Geometry of Radiative Transfer

- Assume a monochromatic / Gaussian He II emission source is surrounded by a spherical shell-like H I region.
- He II UV photons can escape the scattering region by Rayleigh and Raman scattering.
- The H I region is moving away from the He II source with constant velocity v_{exp}.
- Parameters
 - N_{HI} (column density)
 - v_{exp} (expansion velocity of the HI region)

Result 1 : Monochromatic Source

- ① Double peak structure varying with column densities
- ② Appearance of a secondary peak reentry effect
- ③ The width of primary peak $\approx 2 v_{exp}$

Result ①: Monochromatic Source

Result ① : Monochromatic Source

Result ①: Monochromatic Source

Result 1 : Monochromatic Source

Result 1 : Monochromatic Source

Total Raman conversion efficiency

4850 Å conversion efficiency

Result ②: Gaussian Source

• v_{cir} = 20 km/s

v_{Gaussian} = 14.5 km/s

 $v_{Gaussian}$ = 33.5 km/s

Result 2 : Gaussian Source

• v_{cir} = 20 km/s

Future Work

- We will conduct statistical analyses for profile distortion line center, width and skewness
- We will extend our analysis to the case of open geometry, which will yield additional information including inclination.
- Profile fitting should be carried out using observational data with excellent signal to noise ratio allowing reliable continuum subtraction.